Advanced MCMC methods for sampling on diffusion pathspace
Alexandros Beskos,
Konstantinos Kalogeropoulos () and
Erik Pazos
Stochastic Processes and their Applications, 2013, vol. 123, issue 4, 1415-1453
Abstract:
The need to calibrate increasingly complex statistical models requires a persistent effort for further advances on available, computationally intensive Monte-Carlo methods. We study here an advanced version of familiar Markov-chain Monte-Carlo (MCMC) algorithms that sample from target distributions defined as change of measures from Gaussian laws on general Hilbert spaces. Such a model structure arises in several contexts: we focus here at the important class of statistical models driven by diffusion paths whence the Wiener process constitutes the reference Gaussian law. Particular emphasis is given on advanced Hybrid Monte-Carlo (HMC) which makes large, derivative-driven steps in the state space (in contrast with local-move Random-walk-type algorithms) with analytical and experimental results. We illustrate its computational advantages in various diffusion processes and observation regimes; examples include stochastic volatility and latent survival models. In contrast with their standard MCMC counterparts, the advanced versions have mesh-free mixing times, as these will not deteriorate upon refinement of the approximation of the inherently infinite-dimensional diffusion paths by finite-dimensional ones used in practice when applying the algorithms on a computer.
Keywords: Gaussian measure; Diffusion process; Covariance operator; Hamiltonian dynamics; Mixing time; Stochastic volatility (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002621
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Advanced MCMC methods for sampling on diffusion pathspace (2013) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:4:p:1415-1453
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.12.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().