EconPapers    
Economics at your fingertips  
 

A mean-reverting SDE on correlation matrices

Abdelkoddousse Ahdida and Aurélien Alfonsi

Stochastic Processes and their Applications, 2013, vol. 123, issue 4, 1472-1520

Abstract: We introduce a mean-reverting SDE whose solution is naturally defined on the space of correlation matrices. This SDE can be seen as an extension of the well-known Wright–Fisher diffusion. We provide conditions that ensure weak and strong uniqueness of the SDE, and describe its ergodic limit. We also shed light on a useful connection with Wishart processes that makes understand how we get the full SDE. Then, we focus on the simulation of this diffusion and present discretization schemes that achieve a second-order weak convergence. Last, we give a possible application of these processes in finance and argue that they could easily replace and improve the standard assumption of a constant correlation.

Keywords: Correlation; Wright–Fisher diffusions; Multi-allele Wright–Fisher model; Jacobi processes; Wishart processes; Discretization schemes; Multi-asset model (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002694
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:4:p:1472-1520

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.12.008

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:123:y:2013:i:4:p:1472-1520