Second order backward stochastic differential equations under a monotonicity condition
Dylan Possamaï
Stochastic Processes and their Applications, 2013, vol. 123, issue 5, 1521-1545
Abstract:
In a recent paper, Soner, Touzi and Zhang (2012) [19] have introduced a notion of second order backward stochastic differential equations (2BSDEs), which are naturally linked to a class of fully non-linear PDEs. They proved existence and uniqueness for a generator which is uniformly Lipschitz in the variables y and z. The aim of this paper is to extend these results to the case of a generator satisfying a monotonicity condition in y. More precisely, we prove existence and uniqueness for 2BSDEs with a generator which is Lipschitz in z and uniformly continuous with linear growth in y. Moreover, we emphasize throughout the paper the major difficulties and differences due to the 2BSDE framework.
Keywords: Second order backward stochastic differential equation; Monotonicity condition; Linear growth; Singular probability measures (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913000112
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:5:p:1521-1545
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.01.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().