Coupling and strong Feller for jump processes on Banach spaces
Feng-Yu Wang and
Jian Wang
Stochastic Processes and their Applications, 2013, vol. 123, issue 5, 1588-1615
Abstract:
By using lower bound conditions of the Lévy measure w.r.t. a nice reference measure, the coupling and strong Feller properties are investigated for the Markov semigroup associated with a class of linear SDEs driven by (non-cylindrical) Lévy processes on a Banach space. Unlike in the finite-dimensional case where these properties have also been confirmed for Lévy processes without drift, in the infinite-dimensional setting the appearance of a drift term is essential to ensure the quasi-invariance of the process by shifting the initial data. Gradient estimates and exponential convergence are also investigated. The main results are illustrated by specific models on the Wiener space and separable Hilbert spaces.
Keywords: Coupling; Strong Feller; Lévy process; Wiener space (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913000136
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:5:p:1588-1615
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.01.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().