Semi-linear degenerate backward stochastic partial differential equations and associated forward–backward stochastic differential equations
Kai Du and
Qi Zhang
Stochastic Processes and their Applications, 2013, vol. 123, issue 5, 1616-1637
Abstract:
In this paper, we consider the Cauchy problem of semi-linear degenerate backward stochastic partial differential equations (BSPDEs) under general settings without technical assumptions on the coefficients. For the solution of semi-linear degenerate BSPDE, we first give a proof for its existence and uniqueness, as well as regularity. Then the connection between semi-linear degenerate BSPDEs and forward–backward stochastic differential equations (FBSDEs) is established, which can be regarded as an extension of the Feynman–Kac formula to the non-Markovian framework.
Keywords: Backward stochastic partial differential equations; Semi-linear degenerate equations; Forward–backward stochastic differential equations; Feynman–Kac formula (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913000148
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:5:p:1616-1637
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.01.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().