The set-indexed Lévy process: Stationarity, Markov and sample paths properties
Erick Herbin and
Ely Merzbach
Stochastic Processes and their Applications, 2013, vol. 123, issue 5, 1638-1670
Abstract:
We present a satisfactory definition of the important class of Lévy processes indexed by a general collection of sets. We use a new definition for increment stationarity of set-indexed processes to obtain different characterizations of this class. As an example, the set-indexed compound Poisson process is introduced. The set-indexed Lévy process is characterized by infinitely divisible laws and a Lévy–Khintchine representation. Moreover, the following concepts are discussed: projections on flows, Markov properties, and pointwise continuity. Finally the study of sample paths leads to a Lévy–Itô decomposition. As a corollary, the semi-martingale property is proved.
Keywords: Compound Poisson process; Increment stationarity; Infinitely divisible distribution; Lévy–Itô decomposition; Lévy processes; Markov processes; Random field; Independently scattered random measures; Set-indexed processes (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913000100
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:5:p:1638-1670
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.01.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().