EconPapers    
Economics at your fingertips  
 

On the length of an external branch in the Beta-coalescent

Jean-Stéphane Dhersin, Fabian Freund, Arno Siri-Jégousse and Linglong Yuan

Stochastic Processes and their Applications, 2013, vol. 123, issue 5, 1691-1715

Abstract: In this paper, we consider Beta(2−α,α) (with 1<α<2) and related Λ-coalescents. If T(n) denotes the length of a randomly chosen external branch of the n-coalescent, we prove the convergence of nα−1T(n) when n tends to ∞, and give the limit. To this aim, we give asymptotics for the number σ(n) of collisions which occur in the n-coalescent until the end of the chosen external branch, and for the block counting process associated with the n-coalescent.

Keywords: Coalescent process; Beta-coalescent; External branch; Block counting process; Recursive construction (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002712
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:5:p:1691-1715

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.12.010

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:123:y:2013:i:5:p:1691-1715