Estimates for the density of functionals of SDEs with irregular drift
Arturo Kohatsu-Higa and
Azmi Makhlouf
Stochastic Processes and their Applications, 2013, vol. 123, issue 5, 1716-1728
Abstract:
We obtain upper and lower bounds for the density of a functional of a diffusion whose drift is bounded and measurable. The argument consists of using Girsanov’s theorem together with an Itô–Taylor expansion of the change of measure. One then applies Malliavin calculus techniques in a non-trivial manner so as to avoid the irregularity of the drift. An integration by parts formula for this set-up is obtained.
Keywords: Stochastic differential equations; Density; Malliavin calculus; Irregular drift (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491300015X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:5:p:1716-1728
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.01.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().