EconPapers    
Economics at your fingertips  
 

Characterization of infinite divisibility by duality formulas. Application to Lévy processes and random measures

Rüdiger Murr

Stochastic Processes and their Applications, 2013, vol. 123, issue 5, 1729-1749

Abstract: Processes with independent increments are proven to be the unique solutions of duality formulas. This result is based on a simple characterization of infinitely divisible random vectors by a functional equation in which a difference operator appears. This operator is constructed by a variational method and compared to approaches involving chaos decompositions. We also obtain a related characterization of infinitely divisible random measures.

Keywords: Duality formula; Integration by parts formula; Malliavin calculus; Infinite divisibility; Lévy processes; Random measures (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002736
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:5:p:1729-1749

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.12.012

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:123:y:2013:i:5:p:1729-1749