Characterization of the finite variation property for a class of stationary increment infinitely divisible processes
Basse-O’Connor, Andreas and
Jan Rosiński
Stochastic Processes and their Applications, 2013, vol. 123, issue 6, 1871-1890
Abstract:
We characterize the finite variation property for stationary increment mixed moving averages driven by infinitely divisible random measures. Such processes include fractional and moving average processes driven by Lévy processes, and also their mixtures. We establish two types of zero–one laws for the finite variation property. We also consider some examples to illustrate our results.
Keywords: Finite variation; Infinitely divisible processes; Stationary processes; Fractional processes; Zero–one laws (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913000331
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:6:p:1871-1890
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.01.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().