EconPapers    
Economics at your fingertips  
 

Characterization of the finite variation property for a class of stationary increment infinitely divisible processes

Basse-O’Connor, Andreas and Jan Rosiński

Stochastic Processes and their Applications, 2013, vol. 123, issue 6, 1871-1890

Abstract: We characterize the finite variation property for stationary increment mixed moving averages driven by infinitely divisible random measures. Such processes include fractional and moving average processes driven by Lévy processes, and also their mixtures. We establish two types of zero–one laws for the finite variation property. We also consider some examples to illustrate our results.

Keywords: Finite variation; Infinitely divisible processes; Stationary processes; Fractional processes; Zero–one laws (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913000331
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:6:p:1871-1890

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2013.01.014

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:123:y:2013:i:6:p:1871-1890