Random variables as pathwise integrals with respect to fractional Brownian motion
Yuliya Mishura,
Georgiy Shevchenko and
Esko Valkeila
Stochastic Processes and their Applications, 2013, vol. 123, issue 6, 2353-2369
Abstract:
We give both necessary and sufficient conditions for a random variable to be represented as a pathwise stochastic integral with respect to fractional Brownian motion with an adapted integrand. We also show that any random variable is a value of such integral in an improper sense and that such integral can have any prescribed distribution. We discuss some applications of these results, in particular, to fractional Black–Scholes model of financial market.
Keywords: Fractional Brownian motion; Pathwise integral; Generalized Lebesgue–Stieltjes integral; Arbitrage; Replication; Divergence integral (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491300063X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:6:p:2353-2369
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.02.015
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().