An infinite dimensional convolution theorem with applications to the efficient estimation of the integrated volatility
Emmanuelle Clément,
Sylvain Delattre and
Arnaud Gloter
Stochastic Processes and their Applications, 2013, vol. 123, issue 7, 2500-2521
Abstract:
This paper proposes a general approach to obtain asymptotic lower bounds for the estimation of random functionals. The main result is an abstract convolution theorem in a non parametric setting, based on an associated LAMN property. This result is then applied to the estimation of the integrated volatility, or related quantities, of a diffusion process, when the diffusion coefficient depends on an independent Brownian motion.
Keywords: LAMN property; Convolution theorem; Diffusion process (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913000963
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:7:p:2500-2521
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.04.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().