Nonparametric estimation for stochastic differential equations with random effects
F. Comte,
V. Genon-Catalot and
A. Samson
Stochastic Processes and their Applications, 2013, vol. 123, issue 7, 2522-2551
Abstract:
We consider N independent stochastic processes (Xj(t),t∈[0,T]), j=1,…,N, defined by a one-dimensional stochastic differential equation with coefficients depending on a random variable ϕj and study the nonparametric estimation of the density of the random effect ϕj in two kinds of mixed models. A multiplicative random effect and an additive random effect are successively considered. In each case, we build kernel and deconvolution estimators and study their L2-risk. Asymptotic properties are evaluated as N tends to infinity for fixed T or for T=T(N) tending to infinity with N. For T(N)=N2, adaptive estimators are built. Estimators are implemented on simulated data for several examples.
Keywords: Diffusion process; Mixed models; Nonparametric estimation; Random effects (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491300104X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:7:p:2522-2551
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.04.009
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().