Asymptotic theory for Brownian semi-stationary processes with application to turbulence
José Manuel Corcuera,
Emil Hedevang,
Mikko S. Pakkanen and
Mark Podolskij
Stochastic Processes and their Applications, 2013, vol. 123, issue 7, 2552-2574
Abstract:
This paper presents some asymptotic results for statistics of Brownian semi-stationary (BSS) processes. More precisely, we consider power variations of BSS processes, which are based on high frequency (possibly higher order) differences of the BSS model. We review the limit theory discussed by Barndorff-Nielsen et al. (2011) [4] and Barndorff-Nielsen (2012) [5] and present some new connections to fractional diffusion models. We apply our probabilistic results to construct a family of estimators for the smoothness parameter of the BSS process. In this context we develop estimates with gaps, which allow to obtain a valid central limit theorem for the critical region. Finally, we apply our statistical theory to turbulence data.
Keywords: Brownian semi-stationary processes; High frequency data; Limit theorems; Stable convergence; Turbulence (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913000756
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:7:p:2552-2574
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.03.011
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().