EconPapers    
Economics at your fingertips  
 

Ergodicity of observation-driven time series models and consistency of the maximum likelihood estimator

R. Douc, P. Doukhan and E. Moulines

Stochastic Processes and their Applications, 2013, vol. 123, issue 7, 2620-2647

Abstract: This paper deals with a general class of observation-driven time series models with a special focus on time series of counts. We provide conditions under which there exist strict-sense stationary and ergodic versions of such processes. The consistency of the maximum likelihood estimators is then derived for well-specified and misspecified models.

Keywords: Consistency; Ergodicity; Time series of counts; Maximum likelihood; Observation-driven models; Stationarity (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913001051
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:7:p:2620-2647

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2013.04.010

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:123:y:2013:i:7:p:2620-2647