Optimally thresholded realized power variations for Lévy jump diffusion models
José E. Figueroa-López and
Jeffrey Nisen
Stochastic Processes and their Applications, 2013, vol. 123, issue 7, 2648-2677
Abstract:
Thresholded Realized Power Variations (TPVs) are one of the most popular nonparametric estimators for general continuous-time processes with a wide range of applications. In spite of their popularity, a common drawback lies in the necessity of choosing a suitable threshold for the estimator, an issue which so far has mostly been addressed by heuristic selection methods. To address this important issue, we propose an objective selection method based on desirable optimality properties of the estimators. Concretely, we develop a well-posed optimization problem which, for a fixed sample size and time horizon, selects a threshold that minimizes the expected total number of jump misclassifications committed by the thresholding mechanism associated with these estimators. We analytically solve the optimization problem under mild regularity conditions on the density of the underlying jump distribution, allowing us to provide an explicit infill asymptotic characterization of the resulting optimal thresholding sequence at a fixed time horizon. The leading term of the optimal threshold sequence is shown to be proportional to Lévy’s modulus of continuity of the underlying Brownian motion, hence theoretically justifying and sharpening selection methods previously proposed in the literature based on power functions or multiple testing procedures. Furthermore, building on the aforementioned asymptotic characterization, we develop an estimation algorithm, which allows for a feasible implementation of the newfound optimal sequence. Simulations demonstrate the improved finite sample performance offered by optimal TPV estimators in comparison to other popular non-optimal alternatives.
Keywords: Volatility estimation; Jump detection; Lévy processes; Additive processes; Nonparametric estimation; Thresholded estimators; Power variations (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913001014
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:7:p:2648-2677
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.04.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().