Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes
Hiroki Masuda
Stochastic Processes and their Applications, 2013, vol. 123, issue 7, 2752-2778
Abstract:
The purpose of this paper is to derive the stochastic expansion of self-normalized-residual functionals stemming from a class of diffusion type processes observed at high frequency, where total observing period may or may not tend to infinity. The result enables us to construct some explicit statistics for goodness of fit tests, consistent against “presence of a jump component” and “diffusion-coefficient misspecification”; then, the acceptance of the null hypothesis may serve as a collateral evidence for using the correctly specified diffusion type model. Especially, our asymptotic result clarifies how to remove the bias caused by plugging in a diffusion-coefficient estimator.
Keywords: Goodness of fit; High-frequency data; Self-normalized residuals; Stochastic differential equation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491300077X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:7:p:2752-2778
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.03.013
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().