EconPapers    
Economics at your fingertips  
 

Power variation from second order differences for pure jump semimartingales

Viktor Todorov

Stochastic Processes and their Applications, 2013, vol. 123, issue 7, 2829-2850

Abstract: We introduce power variation constructed from powers of the second-order differences of a discretely observed pure-jump semimartingale processes. We derive the asymptotic behavior of the statistic in the setting of high-frequency observations of the underlying process with a fixed time span. Unlike the standard power variation (formed from the first-order differences of the process), the limit of our proposed statistic is determined solely by the jump component of the process regardless of the activity of the latter. We further show that an associated Central Limit Theorem holds for a wider range of activity of the jump process than for the standard power variation. We apply these results for estimation of the jump activity as well as the integrated stochastic scale.

Keywords: Lévy process; Blumenthal–Getoor index; Jump activity; Power variation; Stable convergence (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913000975
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:7:p:2829-2850

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2013.04.005

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:123:y:2013:i:7:p:2829-2850