A simple constructive approach to quadratic BSDEs with or without delay
Philippe Briand and
Romuald Elie
Stochastic Processes and their Applications, 2013, vol. 123, issue 8, 2921-2939
Abstract:
This paper provides a simple approach for the consideration of quadratic BSDEs with bounded terminal conditions. Using solely probabilistic arguments, we retrieve the existence and uniqueness result derived via PDE-based methods by Kobylanski (2000) [14]. This approach is related to the study of quadratic BSDEs presented by Tevzadze (2008) [19]. Our argumentation, as in Tevzadze (2008) [19], highly relies on the theory of BMO martingales which was used for the first time for BSDEs by Hu et al. (2005) [12]. However, we avoid in our method any fixed point argument and use Malliavin calculus to overcome the difficulty. Our new scheme of proof allows also to extend the class of quadratic BSDEs, for which there exists a unique solution: we incorporate delayed quadratic BSDEs, whose driver depends on the recent past of the Y component of the solution. When the delay vanishes, we verify that the solution of a delayed quadratic BSDE converges to the solution of the corresponding classical non-delayed quadratic BSDE.
Keywords: Quadratic BSDE; Delay; BMO martingales; Malliavin calculus (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913000616
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:8:p:2921-2939
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.02.013
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().