Diffusion approximation for signaling stochastic networks
Saul C. Leite and
Marcelo D. Fragoso
Stochastic Processes and their Applications, 2013, vol. 123, issue 8, 2957-2982
Abstract:
This paper introduces an unified approach to diffusion approximations of signaling networks. This is accomplished by the characterization of a broad class of networks that can be described by a set of quantities which suffer exchanges stochastically in time. We call this class stochastic Petri nets with probabilistic transitions, since it is described as a stochastic Petri net but allows a finite set of random outcomes for each transition. This extension permits effects on the network which are commonly interpreted as “routing” in queueing systems. The class is general enough to include, for instance, G-networks with negative customers and triggers as a particular case. With this class at hand, we derive a heavy traffic approximation, where the processes that drive the transitions are given by state-dependent Poisson-type processes and where the probabilities of the random outcomes are also state-dependent. The objective of this approach is to have a diffusion approximation which can be readily applied in several practical problems. We illustrate the use of the results with some numerical experiments.
Keywords: Queueing theory; Heavy traffic analysis; Stochastic Petri nets; G-networks (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913000665
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:8:p:2957-2982
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.03.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().