Escape times for branching processes with random mutational fitness effects
Jasmine Foo,
Kevin Leder and
Junfeng Zhu
Stochastic Processes and their Applications, 2014, vol. 124, issue 11, 3661-3697
Abstract:
We consider a large declining population of cells under an external selection pressure, modeled as a subcritical branching process. This population has genetic variation introduced at a low rate which leads to the production of exponentially expanding mutant populations, enabling population escape from extinction. Here we consider two possible settings for the effects of the mutation: Case (I) a deterministic mutational fitness advance and Case (II) a random mutational fitness advance. We first establish a functional central limit theorem for the renormalized and sped up version of the mutant cell process. We establish that in Case (I) the limiting process is a trivial constant stochastic process, while in Case (II) the limit process is a continuous Gaussian process for which we identify the covariance kernel. Lastly we apply the functional central limit theorem and some other auxiliary results to establish a central limit theorem (in the large initial population limit) of the first time at which the mutant cell population dominates the population. We find that the limiting distribution is Gaussian in both Cases (I) and (II), but a logarithmic correction is needed in the scaling for Case (II). This problem is motivated by the question of optimal timing for switching therapies to effectively control drug resistance in biomedical applications.
Keywords: Branching processes; Weak convergence; Escape from extinction; Population dynamics (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914001331
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:11:p:3661-3697
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.06.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().