Singularity of full scaling limits of planar nearcritical percolation
Simon Aumann
Stochastic Processes and their Applications, 2014, vol. 124, issue 11, 3807-3818
Abstract:
We consider full scaling limits of planar nearcritical percolation in the Quad-Crossing-Topology introduced by Schramm and Smirnov. We show that two nearcritical scaling limits with different parameters are singular with respect to each other. The results hold for percolation models on rather general lattices, including bond percolation on the square lattice and site percolation on the triangular lattice.
Keywords: Nearcritical; Percolation; Full scaling limit; Singular (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914001604
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:11:p:3807-3818
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.07.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().