Measurability of semimartingale characteristics with respect to the probability law
Ariel Neufeld and
Marcel Nutz
Stochastic Processes and their Applications, 2014, vol. 124, issue 11, 3819-3845
Abstract:
Given a càdlàg process X on a filtered measurable space, we construct a version of its semimartingale characteristics which is measurable with respect to the underlying probability law. More precisely, let Psem be the set of all probability measures P under which X is a semimartingale. We construct processes (BP,C,νP) which are jointly measurable in time, space, and the probability law P, and are versions of the semimartingale characteristics of X under P for each P∈Psem. This result gives a general and unifying answer to measurability questions that arise in the context of quasi-sure analysis and stochastic control under the weak formulation.
Keywords: Semimartingale characteristics; Semimartingale property; Doob–Meyer decomposition (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914001616
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:11:p:3819-3845
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.07.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().