New sufficient conditions of existence, moment estimations and non confluence for SDEs with non-Lipschitzian coefficients
Guangqiang Lan and
Jiang-Lun Wu
Stochastic Processes and their Applications, 2014, vol. 124, issue 12, 4030-4049
Abstract:
The objective of the present paper is to find new sufficient conditions for the existence of unique strong solutions to a class of (time-inhomogeneous) stochastic differential equations with random, non-Lipschitzian coefficients. We give an example to show that our conditions are indeed weaker than those relevant conditions existing in the literature. We also derive moment estimations for the maximum process of the solution. Finally, we present a sufficient condition to ensure the non confluence property of the solution of time-homogeneous SDE which, in one dimension, is nothing but stochastic monotone property of the solution.
Keywords: Stochastic differential equations; Non-Lipschitzian; Existence; Non explosion; Non confluence; Moment estimations for the maximum process; Test function (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914001665
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:12:p:4030-4049
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.07.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().