On the independence of the value function for stochastic differential games of the probability space
N.V. Krylov
Stochastic Processes and their Applications, 2014, vol. 124, issue 12, 4224-4243
Abstract:
We show that the value function in a stochastic differential game does not change if we keep the same space (Ω,F) but introduce probability measures by means of Girsanov’s transformation depending on the policies of the players. We also show that the value function does not change if we allow the driving Wiener processes to depend on the policies of the players. Finally, we show that the value function does not change if we perform a random time change with the rate depending on the policies of the players.
Keywords: Stochastic differential games; Isaacs equation; Value functions (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491400180X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:12:p:4224-4243
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.07.021
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().