EconPapers    
Economics at your fingertips  
 

On the eigenvalue process of a matrix fractional Brownian motion

David Nualart and Victor Pérez-Abreu

Stochastic Processes and their Applications, 2014, vol. 124, issue 12, 4266-4282

Abstract: We investigate the process of eigenvalues of a symmetric matrix-valued process which upper diagonal entries are independent one-dimensional Hölder continuous Gaussian processes of order γ∈(1/2,1). Using the stochastic calculus with respect to the Young integral we show that these eigenvalues do not collide at any time with probability one. When the matrix process has entries that are fractional Brownian motions with Hurst parameter H∈(1/2,1), we find a stochastic differential equation in a Malliavin calculus sense for the eigenvalues of the corresponding matrix fractional Brownian motion. A new generalized version of the Itô formula for the multidimensional fractional Brownian motion is first established.

Keywords: Young integral; Noncolliding process; Dyson process; Hölder continuous Gaussian process (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914001768
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:12:p:4266-4282

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2014.07.017

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:124:y:2014:i:12:p:4266-4282