On signed measure valued solutions of stochastic evolution equations
Bruno Rémillard and
Jean Vaillancourt
Stochastic Processes and their Applications, 2014, vol. 124, issue 1, 101-122
Abstract:
We study existence, uniqueness and mass conservation of signed measure valued solutions of a class of stochastic evolution equations with respect to the Wiener sheet, including as particular cases the stochastic versions of the regularized two-dimensional Navier–Stokes equations in vorticity form introduced by Kotelenez.
Keywords: Signed measure; Stochastic evolution equation; McKean–Vlasov; Wiener sheet (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913001907
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:1:p:101-122
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.07.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().