EconPapers    
Economics at your fingertips  
 

Moment boundedness of linear stochastic delay differential equations with distributed delay

Zhen Wang, Xiong Li and Jinzhi Lei

Stochastic Processes and their Applications, 2014, vol. 124, issue 1, 586-612

Abstract: This paper studies the moment boundedness of solutions of linear stochastic delay differential equations with distributed delay. For a linear stochastic delay differential equation, the first moment stability is known to be identical to that of the corresponding deterministic delay differential equation. However, boundedness of the second moment is complicated and depends on the stochastic terms. In this paper, the characteristic function of the equation is obtained through techniques of the Laplace transform. From the characteristic equation, sufficient conditions for the second moment to be bounded or unbounded are proposed.

Keywords: Stochastic delay differential equation; Distributed delay; Moment boundedness (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491300238X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:1:p:586-612

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2013.09.002

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:124:y:2014:i:1:p:586-612