A martingale decomposition for quadratic forms of Markov chains (with applications)
Yves Atchade and
Matias Cattaneo
Stochastic Processes and their Applications, 2014, vol. 124, issue 1, 646-677
Abstract:
We develop a martingale-based decomposition for a general class of quadratic forms of Markov chains, which resembles the well-known Hoeffding decomposition of U-statistics of i.i.d. data up to a reminder term. To illustrate the applicability of our results, we discuss how this decomposition may be used to studying the large-sample properties of certain statistics in two problems: (i) we examine the asymptotic behavior of lag-window estimators in time series, and (ii) we derive an asymptotic linear representation and limiting distribution of U-statistics with varying kernels in time series. We also discuss simplified examples of interest in statistics and econometrics.
Keywords: Central limit theorems; Markov chains; Markov chain Monte Carlo; Martingale approximations; Quadratic forms; U-statistics (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913002378
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:1:p:646-677
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.09.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().