EconPapers    
Economics at your fingertips  
 

Stochastic integration with respect to multifractional Brownian motion via tangent fractional Brownian motions

Joachim Lebovits, Jacques Lévy Véhel and Erick Herbin

Stochastic Processes and their Applications, 2014, vol. 124, issue 1, 678-708

Abstract: Stochastic integration w.r.t. fractional Brownian motion (fBm) has raised strong interest in recent years, motivated in particular by applications in finance and Internet traffic modelling. Since fBm is not a semi-martingale, stochastic integration requires specific developments. Multifractional Brownian motion (mBm) generalizes fBm by letting the local Hölder exponent vary in time. This is useful in various areas, including financial modelling and biomedicine. The aim of this work is twofold: first, we prove that an mBm may be approximated in law by a sequence of “tangent” fBms. Second, using this approximation, we show how to construct stochastic integrals w.r.t. mBm by “transporting” corresponding integrals w.r.t. fBm. We illustrate our method on examples such as the Wick–Itô, Skorohod and pathwise integrals.

Keywords: Fractional and multifractional Brownian motions; Gaussian processes; Convergence in law; White noise theory; Wick–Itô integral; Skorohod integral; Pathwise integral (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491300241X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:1:p:678-708

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2013.09.004

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:124:y:2014:i:1:p:678-708