Non-parametric adaptive estimation of the drift for a jump diffusion process
Émeline Schmisser
Stochastic Processes and their Applications, 2014, vol. 124, issue 1, 883-914
Abstract:
In this article, we consider a jump diffusion process (Xt)t≥0 observed at discrete times t=0,Δ,…,nΔ. The sampling interval Δ tends to 0 and nΔ tends to infinity. We assume that (Xt)t≥0 is ergodic, strictly stationary and exponentially β-mixing. We use a penalised least-square approach to compute two adaptive estimators of the drift function b. We provide bounds for the risks of the two estimators.
Keywords: Jump diffusions; Nonparametric estimation; Drift estimation; Model selection (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913002494
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:1:p:883-914
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.09.012
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().