A numerical algorithm for a class of BSDEs via the branching process
Pierre Henry-Labordère,
Xiaolu Tan and
Nizar Touzi
Stochastic Processes and their Applications, 2014, vol. 124, issue 2, 1112-1140
Abstract:
We give a study to the algorithm for semi-linear parabolic PDEs in Henry-Labordère (2012) and then generalize it to the non-Markovian case for a class of Backward SDEs (BSDEs). By simulating the branching process, the algorithm does not need any backward regression. To prove that the numerical algorithm converges to the solution of BSDEs, we use the notion of viscosity solution of path dependent PDEs introduced by Ekren et al. (to appear) [5] and extended in Ekren et al. (2012) [6,7].
Keywords: Numerical algorithm; BSDEs; Branching process; Viscosity solution; Path dependent PDEs (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913002585
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:2:p:1112-1140
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.10.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().