Approximation of stationary solutions to SDEs driven by multiplicative fractional noise
Serge Cohen,
Fabien Panloup and
Samy Tindel
Stochastic Processes and their Applications, 2014, vol. 124, issue 3, 1197-1225
Abstract:
In a previous paper, we studied the ergodic properties of an Euler scheme of a stochastic differential equation with a Gaussian additive noise in order to approximate the stationary regime of such an equation. We now consider the case of multiplicative noise when the Gaussian process is a fractional Brownian motion with Hurst parameter H>1/2 and obtain some (functional) convergence properties of some empirical measures of the Euler scheme to the stationary solutions of such SDEs.
Keywords: Stochastic differential equation; Fractional Brownian motion; Stationary process; Euler scheme (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913002858
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:3:p:1197-1225
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.11.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().