EconPapers    
Economics at your fingertips  
 

Estimation for stochastic damping hamiltonian systems under partial observation—I. Invariant density

Patrick Cattiaux, José R. León and Clémentine Prieur

Stochastic Processes and their Applications, 2014, vol. 124, issue 3, 1236-1260

Abstract: In this paper, we study the non-parametric estimation of the invariant density of some ergodic hamiltonian systems, using kernel estimators. The main result is a central limit theorem for such estimators under partial observation (only the positions are observed). The main tools are mixing estimates and refined covariance inequalities, the main difficulty being the strong degeneracy of such processes. This is the first paper of a series of at least two, devoted to the estimation of the characteristics of such processes: invariant density, drift term, volatility.

Keywords: Hypoelliptic diffusion; Nonparametric density estimation; Partial observations (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913002615
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:3:p:1236-1260

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2013.10.008

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:124:y:2014:i:3:p:1236-1260