Estimation for stochastic damping hamiltonian systems under partial observation—I. Invariant density
Patrick Cattiaux,
José R. León and
Clémentine Prieur
Stochastic Processes and their Applications, 2014, vol. 124, issue 3, 1236-1260
Abstract:
In this paper, we study the non-parametric estimation of the invariant density of some ergodic hamiltonian systems, using kernel estimators. The main result is a central limit theorem for such estimators under partial observation (only the positions are observed). The main tools are mixing estimates and refined covariance inequalities, the main difficulty being the strong degeneracy of such processes. This is the first paper of a series of at least two, devoted to the estimation of the characteristics of such processes: invariant density, drift term, volatility.
Keywords: Hypoelliptic diffusion; Nonparametric density estimation; Partial observations (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913002615
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:3:p:1236-1260
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.10.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().