Fractional diffusion limit for a stochastic kinetic equation
Sylvain De Moor
Stochastic Processes and their Applications, 2014, vol. 124, issue 3, 1335-1367
Abstract:
We study the stochastic fractional diffusive limit of a kinetic equation involving a small parameter and perturbed by a smooth random term. Generalizing the method of perturbed test functions, under an appropriate scaling for the small parameter, and with the moment method used in the deterministic case, we show the convergence in law to a stochastic fluid limit involving a fractional Laplacian.
Keywords: Kinetic equations; Diffusion limit; Stochastic partial differential equations; Perturbed test functions; Fractional diffusion (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913002883
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:3:p:1335-1367
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.11.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().