Stochastic equations of super-Lévy processes with general branching mechanism
Hui He,
Zenghu Li and
Xu Yang
Stochastic Processes and their Applications, 2014, vol. 124, issue 4, 1519-1565
Abstract:
In this work, the process of distribution functions of a one-dimensional super-Lévy process with general branching mechanism is characterized as the pathwise unique solution of a stochastic integral equation driven by time–space Gaussian white noises and Poisson random measures. This generalizes the recent work of Xiong (2013), where the result for a super-Brownian motion with binary branching mechanism was obtained.
Keywords: Super-Lévy process; Stochastic integral equation; Pathwise uniqueness; Backward doubly stochastic equation with jumps (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913003049
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:4:p:1519-1565
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.12.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().