BSDEs driven by time-changed Lévy noises and optimal control
Giulia Di Nunno and
Steffen Sjursen
Stochastic Processes and their Applications, 2014, vol. 124, issue 4, 1679-1709
Abstract:
We study backward stochastic differential equations (BSDEs) for time-changed Lévy noises when the time-change is independent of the Lévy process. We prove existence and uniqueness of the solution and we obtain an explicit formula for linear BSDEs and a comparison principle. BSDEs naturally appear in control problems. Here we prove a sufficient maximum principle for a general optimal control problem of a system driven by a time-changed Lévy noise. As an illustration we solve the mean–variance portfolio selection problem.
Keywords: BSDE; Time-change; Maximum principle; Doubly stochastic Poisson process; Conditionally independent increments (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913003074
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:4:p:1679-1709
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.12.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().