EconPapers    
Economics at your fingertips  
 

Two population models with constrained migrations

Raoul Normand

Stochastic Processes and their Applications, 2014, vol. 124, issue 5, 1773-1812

Abstract: We study two models of population with migration. On an island lives an individual whose genealogy is given by a critical Galton–Watson tree. If its offspring ends up consuming all the resources, any newborn child has to migrate to find new resources. In this sense, the migrations are constrained, not random. We will consider first a model where resources do not regrow, and then another one when they do. In both cases, we are interested in how the population spreads on the islands, when the number of initial individuals and available resources tend to infinity.

Keywords: Population model; Random measure; Weak convergence; Branching process; Migration; Brownian motion (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914000106
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:5:p:1773-1812

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2014.01.001

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:124:y:2014:i:5:p:1773-1812