Local existence and non-explosion of solutions for stochastic fractional partial differential equations driven by multiplicative noise
Michael Röckner,
Rongchan Zhu and
Xiangchan Zhu
Stochastic Processes and their Applications, 2014, vol. 124, issue 5, 1974-2002
Abstract:
In this paper we prove the local existence and uniqueness of solutions for a class of stochastic fractional partial differential equations driven by multiplicative noise. We also establish that for this class of equations adding linear multiplicative noise provides a regularizing effect: the solutions will not blow up with high probability if the initial data is sufficiently small, or if the noise coefficient is sufficiently large. As applications our main results are applied to various types of SPDE such as stochastic reaction–diffusion equations, stochastic fractional Burgers equation, stochastic fractional Navier–Stokes equation, stochastic quasi-geostrophic equations and stochastic surface growth PDE.
Keywords: Stochastic fractional partial differential equation; Local existence and uniqueness; Blow up; Navier–Stokes equation; Fractional Burgers equation; Quasi-geostrophic equation; Surface growth models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914000271
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:5:p:1974-2002
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.01.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().