EconPapers    
Economics at your fingertips  
 

Local existence and non-explosion of solutions for stochastic fractional partial differential equations driven by multiplicative noise

Michael Röckner, Rongchan Zhu and Xiangchan Zhu

Stochastic Processes and their Applications, 2014, vol. 124, issue 5, 1974-2002

Abstract: In this paper we prove the local existence and uniqueness of solutions for a class of stochastic fractional partial differential equations driven by multiplicative noise. We also establish that for this class of equations adding linear multiplicative noise provides a regularizing effect: the solutions will not blow up with high probability if the initial data is sufficiently small, or if the noise coefficient is sufficiently large. As applications our main results are applied to various types of SPDE such as stochastic reaction–diffusion equations, stochastic fractional Burgers equation, stochastic fractional Navier–Stokes equation, stochastic quasi-geostrophic equations and stochastic surface growth PDE.

Keywords: Stochastic fractional partial differential equation; Local existence and uniqueness; Blow up; Navier–Stokes equation; Fractional Burgers equation; Quasi-geostrophic equation; Surface growth models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914000271
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:5:p:1974-2002

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2014.01.010

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:124:y:2014:i:5:p:1974-2002