Solvability of forward–backward stochastic partial differential equations
Hong Yin
Stochastic Processes and their Applications, 2014, vol. 124, issue 8, 2583-2604
Abstract:
In this paper we study the solvability of a class of fully-coupled forward–backward stochastic partial differential equations (FBSPDEs). These FBSPDEs cannot be put into the framework of stochastic evolution equations in general, and the usual decoupling methods for the Markovian forward–backward SDEs are difficult to apply. We prove the well-posedness of the FBSPDEs, under various conditions on the coefficients, by using either the method of contraction mapping or the method of continuation. These conditions, especially in the higher dimensional case, are novel in the literature.
Keywords: Forward–backward stochastic partial differential equations; The method of contraction mapping; The method of continuation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914000568
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:8:p:2583-2604
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.03.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().