Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling
Yuta Koike
Stochastic Processes and their Applications, 2014, vol. 124, issue 8, 2699-2753
Abstract:
We will focus on estimating the integrated covariance of two diffusion processes observed in a nonsynchronous manner. The observation data is contaminated by some noise, which possibly depends on the time and the latent diffusion processes, while the sampling times also possibly depend on the observed processes. In a high-frequency setting, we consider a modified version of the pre-averaged Hayashi–Yoshida estimator, and we show that such a kind of estimator has the consistency and the asymptotic mixed normality, and attains the optimal rate of convergence.
Keywords: Hayashi–Yoshida estimator; Integrated covariance; Market microstructure noise; Nonsynchronous observations; Pre-averaging; Stable convergence; Strong predictability (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914000672
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:8:p:2699-2753
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.03.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().