Ergodicity for time-changed symmetric stable processes
Zhen-Qing Chen and
Jian Wang
Stochastic Processes and their Applications, 2014, vol. 124, issue 9, 2799-2823
Abstract:
In this paper we study ergodicity and related semigroup property for a class of symmetric Markov jump processes associated with time-changed symmetric α-stable processes. For this purpose, explicit and sharp criteria for Poincaré type inequalities (including Poincaré, super Poincaré and weak Poincaré inequalities) of the corresponding non-local Dirichlet forms are derived. Moreover, our main results, when applied to a class of one-dimensional stochastic differential equations driven by symmetric α-stable processes, yield sharp criteria for their various ergodic properties and corresponding functional inequalities.
Keywords: Symmetric stable processes; Time change; Poincaré type inequalities; Non-local Dirichlet forms (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491400088X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:9:p:2799-2823
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.04.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().