A general study of extremes of stationary tessellations with examples
Nicolas Chenavier
Stochastic Processes and their Applications, 2014, vol. 124, issue 9, 2917-2953
Abstract:
Let m be a random tessellation in Rd, d≥1, observed in a bounded Borel subset W and f(⋅) be a measurable function defined on the set of convex bodies. A point z(C), called the nucleus of C, is associated with each cell C of m. Applying f(⋅) to all the cells of m, we investigate the order statistics of f(C) over all cells C∈m with nucleus in Wρ=ρ1/dW when ρ goes to infinity. Under a strong mixing property and a local condition on m and f(⋅), we show a general theorem which reduces the study of the order statistics to the random variable f(C), where C is the typical cell of m. The proof is deduced from a Poisson approximation on a dependency graph via the Chen–Stein method. We obtain that the point process {(ρ−1/dz(C),aρ−1(f(C)−bρ)),C∈m,z(C)∈Wρ}, where aρ>0 and bρ are two suitable functions depending on ρ, converges to a non-homogeneous Poisson point process. Several applications of the general theorem are derived in the particular setting of Poisson–Voronoi and Poisson–Delaunay tessellations and for different functions f(⋅) such as the inradius, the circumradius, the area, the volume of the Voronoi flower and the distance to the farthest neighbor.
Keywords: Random tessellations; Extreme values; Order statistics; Dependency graph; Poisson approximation; Voronoi flower; Poisson point process; Gauss–Poisson point process (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914000957
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:9:p:2917-2953
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.04.009
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().