Two-sided estimates for the transition densities of symmetric Markov processes dominated by stable-like processes in C1,η open sets
Kyung-Youn Kim and
Panki Kim
Stochastic Processes and their Applications, 2014, vol. 124, issue 9, 3055-3083
Abstract:
In this paper, we study sharp Dirichlet heat kernel estimates for a large class of symmetric Markov processes in C1,η open sets. The processes are symmetric pure jump Markov processes with jumping intensity κ(x,y)ψ1(|x−y|)−1|x−y|−d−α, where α∈(0,2). Here, ψ1 is an increasing function on [0,∞), with ψ1(r)=1 on 01 for β∈[0,∞], and κ(x,y) is a symmetric function confined between two positive constants, with |κ(x,y)−κ(x,x)|≤c5|x−y|ρ for |x−y|<1 and ρ>α/2. We establish two-sided estimates for the transition densities of such processes in C1,η open sets when η∈(α/2,1]. In particular, our result includes (relativistic) symmetric stable processes and finite-range stable processes in C1,η open sets when η∈(α/2,1].
Keywords: Dirichlet form; Jump process; Jumping kernel; Markov process; Heat kernel; Dirichlet heat kernel; Transition density; Lévy system (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914000908
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:9:p:3055-3083
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.04.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().