Infinite-dimensional stochastic differential equations related to Bessel random point fields
Ryuichi Honda and
Hirofumi Osada
Stochastic Processes and their Applications, 2015, vol. 125, issue 10, 3801-3822
Abstract:
We solve the infinite-dimensional stochastic differential equations (ISDEs) describing an infinite number of Brownian particles in R+ interacting through the two-dimensional Coulomb potential. The equilibrium states of the associated unlabeled stochastic dynamics are Bessel random point fields. To solve these ISDEs, we calculate the logarithmic derivatives, and prove that the random point fields are quasi-Gibbsian.
Keywords: Interacting Brownian particles; Bessel random point fields; Random matrices; Infinite-dimensional stochastic differential equations; Coulomb potentials; Hard edge scaling limit (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915001271
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:10:p:3801-3822
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.05.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().