Phase transition for the dilute clock model
Inés Armendáriz,
Pablo A. Ferrari and
Nahuel Soprano-Loto
Stochastic Processes and their Applications, 2015, vol. 125, issue 10, 3879-3892
Abstract:
We prove that phase transition occurs in the dilute ferromagnetic nearest-neighbour q-state clock model in Zd, for every q≥2 and d≥2. This follows from the fact that the Edwards–Sokal random-cluster representation of the clock model stochastically dominates a supercritical Bernoulli bond percolation probability, a technique that has been applied to show phase transition for the low-temperature Potts model. The domination involves a combinatorial lemma which is one of the main points of this article.
Keywords: Dilute clock model; Phase transition (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915001325
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:10:p:3879-3892
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.05.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().