EconPapers    
Economics at your fingertips  
 

Entropic repulsion of Gaussian free field on high-dimensional Sierpinski carpet graphs

Joe P. Chen and Baris Evren Ugurcan

Stochastic Processes and their Applications, 2015, vol. 125, issue 12, 4632-4673

Abstract: Consider the free field on a fractal graph based on a high-dimensional Sierpinski carpet (e.g. the Menger sponge), that is, a centered Gaussian field whose covariance is the Green’s function for simple random walk on the graph. Moreover assume that a “hard wall” is imposed at height zero so that the field stays positive everywhere. We prove the leading-order asymptotics for the local sample mean of the free field above the hard wall on any transient Sierpinski carpet graph, thereby extending a result of Bolthausen, Deuschel, and Zeitouni for the free field on Zd, d≥3, to the fractal setting.

Keywords: Gaussian free field; Random surfaces; Fractals; Dirichlet forms; Mosco convergence (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915001891
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:12:p:4632-4673

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2015.07.011

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:125:y:2015:i:12:p:4632-4673