Entropic repulsion of Gaussian free field on high-dimensional Sierpinski carpet graphs
Joe P. Chen and
Baris Evren Ugurcan
Stochastic Processes and their Applications, 2015, vol. 125, issue 12, 4632-4673
Abstract:
Consider the free field on a fractal graph based on a high-dimensional Sierpinski carpet (e.g. the Menger sponge), that is, a centered Gaussian field whose covariance is the Green’s function for simple random walk on the graph. Moreover assume that a “hard wall” is imposed at height zero so that the field stays positive everywhere. We prove the leading-order asymptotics for the local sample mean of the free field above the hard wall on any transient Sierpinski carpet graph, thereby extending a result of Bolthausen, Deuschel, and Zeitouni for the free field on Zd, d≥3, to the fractal setting.
Keywords: Gaussian free field; Random surfaces; Fractals; Dirichlet forms; Mosco convergence (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915001891
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:12:p:4632-4673
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.07.011
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().