Games of singular control and stopping driven by spectrally one-sided Lévy processes
Daniel Hernández-Hernández and
Kazutoshi Yamazaki
Stochastic Processes and their Applications, 2015, vol. 125, issue 1, 1-38
Abstract:
We study a zero-sum game where the evolution of a spectrally one-sided Lévy process is modified by a singular controller and is terminated by the stopper. The singular controller minimizes the expected values of running, controlling and terminal costs while the stopper maximizes them. Using fluctuation theory and scale functions, we derive a saddle point and the value function of the game. Numerical examples under phase-type Lévy processes are also given.
Keywords: Controller-and-stopper games; Lévy processes; Scale functions; Continuous and smooth fit (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914001793
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:1:p:1-38
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.07.020
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().