Quadratic covariation estimates in non-smooth stochastic calculus
Sergio Angel Almada Monter
Stochastic Processes and their Applications, 2015, vol. 125, issue 1, 343-361
Abstract:
Given a Brownian Motion W, in this paper we study the asymptotic behavior, as ε→0, of the quadratic covariation between f(εW) and W in the case in which f is not smooth. Among the main features discovered is that the speed of the decay in the case f∈Cα is at least polynomial in ε and not exponential as expected. We use a recent representation as a backward–forward Itô integral of [f(εW),W] to prove an ε-dependent approximation scheme which is of independent interest. We get the result by providing estimates to this approximation. The results are then adapted and applied to generalize the results of Almada Monter and Bakhtin (2011) and Bakhtin (2011) related to the small noise exit from a domain problem for the saddle case.
Keywords: Non-smooth Itô’s formula; Quadratic variation; Large deviation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914002105
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:1:p:343-361
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.09.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().