Central limit theorems for supercritical superprocesses
Yan-Xia Ren,
Renming Song and
Rui Zhang
Stochastic Processes and their Applications, 2015, vol. 125, issue 2, 428-457
Abstract:
In this paper, we establish a central limit theorem for a large class of general supercritical superprocesses with spatially dependent branching mechanisms satisfying a second moment condition. This central limit theorem generalizes and unifies all the central limit theorems obtained recently in Miłoś (2012) and Ren et al. (2014) for supercritical super Ornstein–Uhlenbeck processes. The advantage of this central limit theorem is that it allows us to characterize the limit Gaussian field. In the case of supercritical super Ornstein–Uhlenbeck processes with non-spatially dependent branching mechanisms, our central limit theorem reveals more independent structures of the limit Gaussian field.
Keywords: Central limit theorem; Supercritical superprocess; Excursion measures of superprocesses (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914002208
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:2:p:428-457
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.09.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().